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The Two-Dimensional Coulomb Gas on 
a Sphere: Exact Results 
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At the special value of the reduced inverse temperature F =  2, the equilibrium 
statistical mechanics of a two-dimensional Coulomb gas confined to the surface 
of a sphere is an exactly solvable problem, just as it was for the Coulomb gas 
in a plane. The thermodynamic quantities and all the correlation functions can 
be calculated. Use is made of an isomorphism between the classical Coulomb 
gas and the free Fermi field theory associated with the Dirac operator on the 
sphere. 
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1. I N T R O D U C T I O N  

Some t ime ago,  exact  results were found for the equi l ib r ium stat is t ical  
mechanics  of  a classical  two-d imens iona l  C o u l o m b  gas ( two-componen t  
p lasma) .  At  a special  value of  the t empera ture ,  the t h e r m o d y n a m i c  quan-  
tities and  all the cor re la t ion  funct ions can be calculated.  Star t ing from a 
lat t ice vers ion (1) of  the model ,  it is poss ible  to take  the con t inuum limit. (2'3~ 
Simpli f icat ions  occur  in this con t inuum limit  because of an i somorph i sm 

between the classical  C o u l o m b  gas and  a q u a n t u m  relat ivist ic  free Fe rmi  
field descr ibed  by the two-d imens iona l  D i r ac  Lagrangian .  

In  the present  paper ,  we cons ider  the case of a two-d imens iona l  
C o u l o m b  gas confined to the surface of a sphere at  tha t  same special tem- 
perature .  The ma thema t i ca l  p rob l em is amusing,  because the i somorph i sm 
will now involve a two-d imens iona l  Di rac  equa t ion  on a curved space. 
Ano the r  mo t iva t i on  is tha t  exact  results  on a sphere can be used as a guide 
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for some numerical simulations for which it is convenient to use a spherical 
geometry. {4) The similar problem of the one-component plasma has already 
been investigated. (5'6) 

In Section 2, we review the known results for the two-dimensional 
Coulomb gas in a plane. In Section 3, we show how the problem on a 
sphere is related to the problem in a plane by an appropriate stereographic 
projection. The thermodynamic properties and the correlations are 
obtained, including explicit curvature corrections for the former. 

2. THE C O U L O M B  GAS IN A PLANE 

The model is a two-dimensional system of particles of charges _+e. 
The Coulomb interaction between two particles of charges e and e' at a 
distance r from one another is - e e '  l n ( r / L ) ,  where L is some length scale. 
The dimensionless coupling constant is F=/3e z, where /~ is the inverse 
temperature. 

The point-particle system is well behaved for F < 2 .  From scaling 
considerations, (7) one finds the very simple equation of state 

where p is the pressure and p the number density (total number of particles 
per unit area). More detailed results can be obtained at the special value 
F = 2  for the coupling constant (which we shall choose from now on), 
provided some short-distance cutoff is introduced to prevent the collapse of 
pairs of oppositely charged particles. We first review (with minor changes) 
the relevant parts of refs. 1-3. 

It is convenient to represent the position of a particle either by the 
vector r = (x, y) or by the complex number z = x + iy. For a system of N 
positive and N negative particles, the complex coordinates of which are u,. 
and v i respectively, the Boltzmann factor at F =  2 is 

exp{2 i<~j[ln ~ +In ~ ] - 2 ~ l n  ~ }  

= L  2N I-[i<j(Ui__Uj)(Vi__Vj) 2 

L 2N det 1 2 

where the last equality stems from the Cauchy double-alternant identity. 
Let us consider first a lattice version of the model. Two interwoven lattices 
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U and V are introduced. The positive (negative) particles occupy the sub- 
lattice U(V). Each lattice site contains at most  one particle. Then the grand 
partition function (here defined as a sum including only neutral systems) is 

z=1+ 2 _ L  2+ 4 det 12 2 
u bl - -  V Ul ,U2~ U i , j =  
VE V Vl ,V2E V 

+ .. .  

where the sums are defined with the prescription that configurations which 
differ only by a permutat ion of identical particles are counted only once. It 
can be easily seen that this grand partition function is the expansion of a 
determinant built on all lattice sites: 

m 

1 0 

Z = det 

0 1 

2L 2L 

151 - u l  751 - -  t~2 

2L 2L 

/72 - -  / g l  /~2 - -  /~2  

2L 2L - 

~ I - - U I  U I - - U  2 

2L 2L 

U 2  - -  / )1  / ' /2  - -  / ) 2  

1 0 

0 1 

m 

Let us now take formally the continuum limit, ignoring divergences. 
A more compact  notation can be introduced using 2 x 2 Pauli matrices 1, 
o x, a~,, o: ,  and their combinations 

1 O+=~(CXx+iOy)=(~ ~) and 

The grand partition function Z becomes 

Z = det[1 + 2L(r l  K I r ' )  ] (2.1) 

where K is now a continuous matrix the elements of which in position 
space are defined as 

o+ a (2.2) ( r l K t r ' ) = z _ z , +  _ ~, 
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These matrix elements are themselves 2 x 2  matrices. In the continuum 
limit sums become integrals provided the fugacity 2 is redefined by writing 
Z as 

Z = l + 2 2 f  L2 [z-z ' [2  d2r d2r '+  "'" 

The integral kernel K has the remarkable property that its inverse is 
a very simple differential operator. Indeed, from the identities 

0 1 0 0 l v 2  ae& ln(z-z')(e-i')=-az In I r - r '  I =, ta( r -  r') 8~z-z' 
and 

8 1 
rc6(r - r') 

c?z 5 -  ~' 

it follows that 

=-2 a + V z z + a  ~i)~_z,+~_~,)=-2,a(r-,') 

and therefore the inverse of (2g) -1 g is the Dirac operator 

8 0 )  8 8 

In terms of a rescaled fugacity m = 2~L2, which has the dimensions of 
an inverse length, the grand partition function can be rewritten as 

Therefore 

Z =  det(1 +m~ 1) 

In Z = Tr ln[1 + m~ 1] = Tr ln[(~ + m) ~- -1 ]  (2.3) 

The trace is to be taken here both on space and Pauli matrices. Equation 
(2.3) expresses the well-known equivalence between the two-dimensional 
Coulomb gas at F =  2 and the free relativistic Fermi field associated to the 
Dirac operator ~ + m. The rescaled fugacity m becomes the mass in the 
Dirac operator. 
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One obtains the correlation functions by the usual trick of considering 
the fugacity m in (2.3) as position dependent, m=m(r) ,  and taking 
functional derivatives of In Z with respect to re(r). Marking the sign of the 
particle at r by the index s = + 1 and defining the Green function 

1 
Gsls2(rl, r2)= (rlSll ~-~-~m Ir2s2) (2.4) 

one obtains the one-body density for each species 

Ps = mG,,(r, r) (2.5) 

the truncated two-body densities 

p;22[(rl, r2)= -m2Gsl,2(r~, r2) Os2~,(r2, rl) (2.6) 

and more generally the truncated n-body densities 

p~.~f(rl ,r2, . . . ,rn)=(-1)n+lm~ ~ Gs,,sez(ri~,r,2)...G,eo,,~(r,,,,r,, ) (2.7) 
(i l /2" '-  in) 

where the summation runs over all cycles (ili2---in) built with { 1, 2 ..... n}. 
It is useful to note the symmetry relations (the first of these was misprinted 
in ref. 3) 

G~(rl,r2)=G,~(rz, rl), Gs , ( r l , r2 )=  -G_, , ( r2 ,  rl) (2.8) 

An explicit calculation of (2.4) gives, for a constant fugacity m, 

m 
G++(r l , r2 )=  G _(r l , r2)=~-~Ko(mlr l - r2])  

m 
G_ +(rl, r2)= - G +  _(r2, rl)=-~-~ei~~ Irl -r21) 

where ~0 is the polar angle of r l - r 2  and K 0 and Kx are modified Bessel 
functions. When used in (2.6) and (2.7), this Green function gives finite 
truncated n-body densities (n~>2). However, the one-body density (2.5) 
diverges [K0(0 ) is infinite]. This divergence, expected for a point-particle 
system, can be removed by some regularization procedure. For example, 
if the particles are small, charged, hard disks of diameter cr ("small" 
means rno'~ 1), Ko must be replaced (2'3) by Ko(ma)~ ln (2 /ma) -7  (here 
?,=0.5772... is Euler's constant) and the expressions for the densities 
become (2, 3) 

p + = p _ = ~  lnma 9' (2.9) 
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In the same way, the pressure obtained from (2.3) 

d2k 
/~P = I 

diverges and must be regularized to 

/~p=~-~- in ma 7+  

consistent with (2.9), which is a regularized form of 

1 ~? ~ d2k 1 
P + = P -  = 2  m-~m ( f lP )=m2  J (2rc)Z m2 + k 2 

(2.10) 

(2.11) 

(2.12) 

3. THE COULOMB GAS ON A SPHERE: STEREOGRAPHIC 
PROJECTION 

We now assume that the particles are on the surface of a sphere of 
radius R. We define the Coulomb interaction between two particles of 
charges e and e' as - e e '  ln(r/L),  where r is the length of the straight line 
in space which joins the particles, not as one might expect the geodesic 
distance on the sphere. With this choice, through an appropriate 
stereographic projection, the problem on the sphere can be mapped to a 
planar problem of the type considered in Section 2. The properties of the 
Coulomb gas on the sphere can be expressed in terms of the spectrum and 
Green functions of a Dirac operator on the sphere which is related to the 
usual Dirac operator in the plane by the stereographic projection. 

3.1. Stereographic Projection 

Let us consider a sphere of radius R and the plane tangent to its south 
pole (Fig. 1). Let P be the stereographic projection of a point M of the 
sphere onto the plane, from the north pole. In terms of the spherical 
coordinates (0, q)) of M, the complex coordinate z = x + iy of P is given by 

0 
z = 2Re i~" cotan ~ (3.1) 

This projection is a conformal transformation. An element of length dl at 
M and its projection IdzL at P are related by the conformal weight 

e ~ -= sin2 0 1 
2 -  1 + (IzlZ/4R 2) 
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IM ' 

Fig. !. 

Y 

P 

The s tereographic  projection.  

That is, d l = e  ~ ]dzl, independent of the orientation of these elements. 
Therefore, the angles are conserved. The line joining two points M and M'  
has a Euclidean length 2R sin(c(2), where ~ is the angular distance from 
the center of the sphere. This length also has a simple relation with its 
projection [ z - z ' l :  

0 0' 
2R sin ~ ~ = e ~~ Iz - z'[ e ~'/2 = sin ~ ]z - z'l sin --2 (3.2) 

The grand partition function of the Coulomb gas on the sphere is 

~ 2 L 2  

Z =  I + f d S d S '  [2R sin(~/2)]2 + ... 

= 1 + f dS dS' )~2L2 
l e~ /2 ( z - z ' )  e~~ F " ' "  

where dS and dS' are the area elements around points M and M',  respec- 
tively. Following the same steps as in Section 2, with z -  z' replaced by 
e ~ / 2 ( z - z  ') e ~ we now find for Z the expression 

Z = d e t [ 1  + 2 L ( M [  K I M ' ) ]  (3.3) 

where the matrix elements of K between two points M and M'  are given 
by 

a+ ~_ (3.4) {MI K [M ' )  - eO~/2( z _ z ' )  e ~//2 + e~163 - ~') e ~ 
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Again, the integral kernel K has a diffrential operator as its inverse. The 
inverse of (2n)-1 K is now 

D = e - 3~/2 ,: ~x + a y = e - 3~~ i~e ~~ (3.5) 

since 

D<MI K IM'> = e -  30)/2 ~e~O/2e o~,,2 ~ z _ ~ + ~ )  e-O;/2 
o 

= e-3~/22n6(r - r') e o~'/2 = 2he 2~'6(r - r') = 2n 6(M, M ' )  

Here 6(M,  M ' )  is the Dirac distribution on the sphere defined such that 

f 6(M,  M ' ) d S ' =  f 6(M, M ' )  e 2 d(cos 0 ' ) d q ) ' :  1 

and dS'  = e 2~' d2r '. 
Thus, the Dirac operator ~ in the plane has to be replaced by /9 

defined by (3.5). It turns out that s is the Dirac operator on the sphere. 
The Dirac operators in curved spaces have been investigated by many 
authors. A recent review of the Dirac operator on the sphere can be found 
in ref. 8. For  more general references, see, e.g., ref. 9. 

3.2. Thermodynamic  Properties 

If we define again a mass m in terms of the fugacity )L by m = 2~L2, 
we have instead of (2.3) 

in Z = T r l n [ 1  + m D  1] 

The eigenvalues ~8~ of /9 are +in/R,  where n is any positive integer, 
with multiplicity 2n. Thus, the pressure is given by 

1 1 
tip = ~ In Z - 8/ER 2 Tr In[ 1 - m 2 0 - 2 ]  

2/~R 2 1  ~ n = I m2R27 , , J  = n In 1 + ,--75--/ (3.6) 
1 

and the densities are 

1 ~ m 2 1 
P+ = P -  = 2  m ~mm (tiP) = ~ R  -~Tr m 2 _ / 9  ~ 

m 2 ~ n 
L (3.7) 

2~ m 2 R  2 + n 2 
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These pressure and densities are divergent quantities, unless they are 
regularized by a short-distance cutoff, as in the planar case. 

In the limit R--* 0% setting k=n/R, we retrieve the planar results 
(2.10) and (2.12). However, it is also possible to compute finite-size 
corrections, and these corrections turn out to be nondivergent. They can be 
computed as follows. From (3.6), the finite-size correction to the pressure 
is given by 

tip - flp(R = oo ) = " n ln(n 2 + rn2R 2) 
n i 

N N N 

--fo dnnln(n2+m2R2)-2 • n lnn+2fo  dnnlnn 
J n = l  

From the Euler-MacLaurin summation formula, w i th f (n )=  n ln(n2 + rn2R2), 
one obtains 

N ~N 

n ln(na + m2R2)- j dn n ln(na + m2R 2) 
n ~ l  0 

= -~ [ f (N) - f (O)]  + [ f ' ( N ) - f ' ( 0 ) ]  -7--~ [f"(N) 

- f " ( 0 ) ]  + . . . .  N l n N + ~ ( l n N + I ) + O  ~-5 

1 1 
- 1-2 ln(mR)2 + 120(mR) 2 + ""  

Similarly, there exists an asymptotic expansion (see ref. 10, p. 42) 

N r  1 1 
nlnn--Jo dnnlnn=-~ N l n N + - ~ ( l n N +  l) 

n = l  

where ~' is the derivative of Riemann's zeta function: ~ ' ( -  1) = -0.1654 .... 
Therefore 

1 I ln(mR) 2~ ' ( -1  ) 1 ] 
f lp - f lp (R=oe)=-~  6R 2 ~- R ~ + l Z O m 2 R 4 + . . .  (3.8) 

Correspondingly, the finite-size correction to the densities (3.7) is 

1 1 1  1 l ps -P , (R= oo) = ~-~ 12R2 120m2R4 + ... (3.9) 
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These corrections are respectively of order (ln R ) / R  2 and 1/R 2. This is to be 
compared to the case of a disk of radius R, for which there is a boundary 
correction of order 1/R. 

3.3. Correlat ions 

The correlations are still given by (2.6) and (2.7), where now, however, 
the Green function must be defined with /9, the Dirac operator on the 
sphere: 

1 
Gsls2(rl, r2)=  <rlsll ~ Ir2s2) (3.10) 

We have defined here a point on the sphere by the coordinate r of its 
projection. This Green function has been studied in different forms. For our 
purpose, it is most convenient to adapt one of the earliest references. (11) 

The definition (3.10) of the 2 x 2 matrix G is equivalent to the partial 
differential equations 

(e 3'~162176 G ( r , r ' ) = 6 ( M , M ' ) = e - 2 ~  (3.11) 

In terms of 

G(r, r ') = e~/2G(r, r') e ~'/2 (3.12) 

(3.11) can be rewritten as 

(r + me ~) G(r, r ') = 6(r - r') (3.13) 

This equation (3.13) has a remarkably simple interpretation: (7(r, r ') is the 
Green function for the planar problem with a position-dependent fugacity 
me ~ =m[-1 + (r2/4R2) ] -1. 

A Special Case. Since me ~ depends only on the distance r to 
the origin, we expect that this circular symmetry will make the problem 
simpler in the special case when the source point it at the origin r ' =  0, i.e., 
at the south pole of the sphere. Let us first deal with this case. 

Equation (3.13) then can be written as 

(~(r, 0) = (m - e ~ ) [ ( d  + me~~ - e - ~ ) ]  -1 

or equivalently as 

(~(r, 0)= (m-  e-~ H(r) (3.14) 
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with H(r)  determined by 

[rn2e ~ -- ~e -~  H(r)  = 6(r) 

Because of the circular symmetry, H = H(r) is a function of the distance r 
alone and the equation for H is the ordinary differential equation 

m e - r ~ r r e  drr H ( r ) = ~ ( r )  (3.15) 

Near r = 0, V2H(r) = -8 ( r ) ,  i.e., H(r) is singular as - (2~)-  1 In r. In terms 
of the variable s=e~=sin2(O/2) ,  (3.15) becomes the hypergeometric 
equation 

I d 2 d 2 2 ~ 
s ( 1 - s ) - ~ s 2 - S - ~ s - m  R JH=0, s < l  (3.16) 

The solution to (3.16) which is singular as - ( 2 ~ r ) - ~ l n r ~ - ( 4 z ) - l x  
ln(1 - s )  at the south pole s =  1 and regular at the north pole s = 0  is of the 
form(12~ 

H = AsF(1 + imR, 1 - imR; 2; s) 

where F is the hypergeometric function and A a constant. Indeed, near 
s = 1, the behavior of F is 

F,.. 
sinh ~mR 

rrmR 
[ l n ( 1 - s ) + ~ p ( l + i m R ) + O ( 1 - i m R ) + 2 y ]  (3.17) 

where 0 is the logarithmic derivative of the gamma function and 7 is 
Euler's constant. Therefore A = m R / ( 4 s i n h  rrmR) and we obtain from 
(3.12) (with e~~ 1) and (3.14) 

G++(r ,  0 ) = G  _(r, 0) 

m2R 

4 sinh rcrnR 
sin ~ F 1 + imR, 1 - imR; 2; sin 2 

and 

G+_( r ,  0) = G_ +(r, 0) 

m 0( 
- 4 sinh nmR e- ir  cos ~ F 1 + imR, 1 - imR; 1; sin 2 
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For future reference, it is preferable to write the solution in terms of the 
angular distance e between the two points involved in the Green function. 
Here e = rc - 0, and 

G++(r,  0 ) = G  (r, 0) 

m2R 

4 sinh nmR 

G§ (r, 0 ) = G  +(r, 0) 

m 

4 sinh ~zmR 

c o s ~ F  l+ imR,  l - i m R ; 2 ; c o s  2 (3.18a) 

e ,~Osin~F l + i m R ,  l - i m R ; 1 ; c o s  2 

(3.18b) 

We have written the Green function in terms of its components 

G =  G_+ G 

Because of the rotational symmetry of the sphere, the one-body 
density is a constant and the two-body densities for two points depend only 
on their angular distance cc Therefore, without any loss of generality, the 
one-body density can be retrieved by using (3.18a) in (2.5). The behavior 
(3.17) near s =  1 allows us to build an expansion in inverse powers of R 
and to retrieve (3.9). One obtains the truncated two-body densities by 
using (2.8) and (3.18) in (2.6). 

General Case. The rotational invariance of the two-body trun- 
cated densities implies that the Green function for two points has a 
modulus which depends only on the angular distance e between these 
points. However, in general there is also a phase factor, depending on 
the coordinates of both points, and this phase is needed to compute the 
higher-order densities using (2.7). Thus, we have to look for the Green 
function in the general case of two arbitrary points. 

To find G(r, r') in general, following the method of ref. 11, we shall 
rotate the sphere around a horizontal diameter in such a way that r' comes 
to the south pole. This rotation transforms the complex coordinate z into 

! 

Z - - Z  

z -  1 + (ze'/4R 2) (3.19) 

This formula can be obtained, for instance, by noting that Z has to be a 
metromorphic function of z, since the transformation is a conformal one, 
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and by considering first the special case when z and z' are real. If we make 
this change of variables in the Dirac operator of (3.11), we obtain, after a 
short calculation, 

e 3~/22 ~ + ~ + ~ _ ~  e ~/~+m 

= S I e  3e/22(~+~-~ +~_~/O~e e / ; + m l S - '  

where e e =  [1 + (tzIz/4R2)] -~ is the conformal weight at point Z, and S 
is a 2 x 2 matrix 

where 
1 - (Zs ~) 1 + (s 2) 

e ic - (3.21) 
1 - (Zz'/4R 2) 1 + (zs 2) 

Multiplying both sides of (3.11) on the left by S -1 and noting that 
S-1~5(M, M ' ) =  [-S(Z= 0)] -1 6(M, M' )  = cS(M, M'),  we find 

~3 +rn]S_iG(r,r,)=c~(M,M, ) 

Therefore S-1G(r,r ') is the Green function of the operator which is 
obtained from the one in (3.11) by replacing z by Z but keeping the same 
Pauli matrices. The source point M'  is located at Z = 0. Consequently, 

G(r, r') = SG(Z, O) 

where G(Z, 0) is given by (3.18) with q~ =arg  Z=arg{(z-z')/[1 + (z2'/4R2)] }. 
Performing the multiplication by S gives the Green function, now in the 
general case: 

Gss(r, r') = e isc/2 cos ~ A(c~) (3.22a) 

G+ _(r, r') = G_ +(r, r') = e -i~/2 sin ~- B(~) (3.22b) 
Z 

where 

m2R /1 cos2 ; )  A(ct) = 4 sinh ~mR F ~ + imR, l - imR; 2; 

m ( 
B(~)=4sinhrcmRF l +imR, l - imR;1;cos  

The phase ~ is given by (3.21) and ~/2 = a rg (z -z ' ) .  

822/69/1-2-13 
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Using (3.1) and (3.2), we obtain  al ternative expressions for the phases: 

ff a r g [ s i n 0  . 0' 0 O ] -=2 2 san ~- + COS ~ cos e - i ( ~ ' - u ' ' )  

- =  I 0 0' ~ .  0 0' . , ]  arg cos ~ sin ~ e - s m  ~ cos ~- e '~ 
2 

and a more  compac t  expression for (3.22): 

G ( r , r ' ) = e ~  (~" r)(~'4R 2 r ' ) l  A(c~) + ~" (r - r ' )  B(c~)~ e ~ 
2R 3 

where ~r = (ax,  ay). 
It  m a y  be remarked  that  the form (3.20) of S is not  unexpected. The 

conformal  t rans format ion  (3.19) rotates  a line element by an angle 

Oz 1 + (Iz'I2/4R 2) 
arg -~z = arg [1 + (z~' /4R2)]  2 - - ~  

Therefore,  the local f rame of reference at Z is obta ined  f rom the one at z by 
a ro ta t ion  of angle - ~ a round  the vertical axis. It  is well known that  under  
such a ro ta t ion  the Pauli  matr ices are t ransformed by (3.20). 
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